Original article from Nature.com

Light is necessary for life, but prolonged exposure to artificial light is a matter of increasing health concern. Humans are exposed to increased amounts of light in the blue spectrum produced by light-emitting diodes (LEDs), which can interfere with normal sleep cycles. The LED technologies are relatively new; therefore, the long-term effects of exposure to blue light across the lifespan are not understood. We investigated the effects of light in the model organism, Drosophila melanogaster, and determined that flies maintained in daily cycles of 12-h blue LED and 12-h darkness had significantly reduced longevity compared with flies maintained in constant darkness or in white light with blue wavelengths blocked. Exposure of adult flies to 12 h of blue light per day accelerated aging phenotypes causing damage to retinal cells, brain neurodegeneration, and impaired locomotion. We report that brain damage and locomotor impairments do not depend on the degeneration in the retina, as these phenotypes were evident under blue light in flies with genetically ablated eyes. Blue light induces expression of stress-responsive genes in old flies but not in young, suggesting that cumulative light exposure acts as a stressor during aging. We also determined that several known blue-light-sensitive proteins are not acting in pathways mediating detrimental light effects. Our study reveals the unexpected effects of blue light on fly brain and establishes Drosophila as a model in which to investigate long-term effects of blue light at the cellular and organismal level.

Introduction

Natural light is essential for the entrainment of circadian clocks, which leads to temporal coordination of physiology and behavior. However, emerging evidence suggests that increased exposure to artificial light is a risk factor for sleep and circadian disorders.1,2 With the prevalent use of LED lighting and device displays, humans are subjected to increasing amounts of light in the blue spectrum since commonly used LEDs emit a high fraction of blue light, often peaking at 460 nm (these lights appear white due to the addition of broad-spectrum yellow garnet phosphor).3 Blue light may affect human eyes,4 and recent data suggest that extraocular light may impact human brain physiology.5 However, the consequences of daily exposure to blue-enriched light across the lifespan are not known.6

Research on model organisms suggests that visible light may have a range of detrimental effects. A single acute blue-light exposure causes photoreceptor death in the retina of mice and flies.7,8,9 There are reports that light may shorten longevity in Drosophila,10,11,12 but the mechanisms underlying the effects of light on lifespan have not been pursued. Here, we characterized the effects of different light exposures on the mortality and aging phenotypes in Drosophila. We report that adult flies maintained in cycles of 12h light and 12h darkness show symptoms of accelerated aging, such as impaired locomotor performance, brain neurodegeneration, and reduced lifespan compared with flies reared in constant darkness. We identified blue light as responsible for these aging phenotypes and investigated the involvement of light-responsive pathways in mediating the detrimental effects of blue light on the brain.

Results

Blue light and aging

To investigate whether light affects Drosophila longevity, we first compared the lifespan of white (w1118, hereafter w) adult flies kept in daily cycles of 12-h white fluorescent light alternating with 12 h of darkness (L:D) or in constant darkness (D:D). Survival of flies in D:D was significantly extended compared with those in L:D (Log-rank test, p < 0.0001) and their median lifespan was extended by 42% (Fig. 1a). The difference in mortality could be caused by delayed aging or by other factors. Aging in flies is associated with slower climbing up the vial walls, which can be measured by using the rapid iterative negative geotaxis (RING) assay.13 To determine whether the lifespan extension of D:D flies was associated with delayed aging, we measured vertical locomotion by RING. Middle-aged (30-day-old) males kept in D:D had significantly better average climbing ability than flies kept in L:D (Fig. 1b), suggesting that reduced lifespan of L:D flies may be due to accelerated aging. The lack of pigment granules in the retina makes w flies sensitized to light;14 therefore, we also tested whether the longevity of wild-type Canton S (CS) flies was affected by light. Indeed, the lifespan of CS males and females was significantly reduced in L:D compared with D:D (Log-rank test, p < 0.0001), albeit not as strongly as in w flies (Fig. 1c). Consistent with these results, 30-day-old CS flies in L:D showed a trend toward reduced average climbing ability, which became statistically significant at a later age of 50 days…

Read more: https://www.nature.com/articles/s41514-019-0038-6